

Radio Deep fields & Star-formation at high redshift

Rob Beswick Tom Muxlow, Hannah Thrall, Anita Richards et al

MERLIN & VLA observations of the HDF-N

- From Muxlow et al 2005:
- A field 10 arcminute square centred on the HDF and imaged by MERLIN+VLA contains 92 radio sources with flux densities >40µJy
- Radio sources have angular sizes in the range 0.2"-3" & 85% associated with galaxies brighter than 25th mag
- Below ~60µJy sources are dominated by starburst systems.

4nd April 2006

MERLIN & VLA observations of the HDF-N

•Starburst systems with measured redshifts lie in the range z=0.3 to 1.3 [ρ]

•Optically faint systems (EROs) are dominated by starburst systems at significantly higher redshifts

MERLIN + VLA data

- 18 days of MERLIN & 32hrs of VLA Aconfiguration observations:-
- Covers 8.5 arcmin² centred on the HDF-N (limited by the Lovell primary beam)
- Angular resolution ~0.2-0.5 arcsec
- Image rms ~3.3µJybm⁻¹
- ONE OF THE MOST SENSITIVE RADIO MAPS SO FAR MADE (at least until e-MERLIN!)

The University of Manchester Jodrell Bank

Bright(ish) radio sources

GOODS NORTH: New ACS & Spitzer data

- The historical HDF-N is coincident with the GOODS north field.
- → deeper wider field HST ACS images & catalogues in (B, V, I, z bands)
- →deep Spitzer MIPS & IRAC images & catalogues
- PLUS all the previously existing X-ray & optical data (redshifts photometric & spectroscopic etc ...)
- These new ancillary data imply we can now extend the statistical analysis, beyond Muxlow et al 2005, of the existing MERLIN + VLA high resolution 1.4GHz observations.

GOODS – ACS data

~13030
 galaxies above
 mag 28.3 mag
 in z-band (just
 in 8.5 arcmin²
 field)

 ACS images aligned with MERLIN radio image to <0.05 arcsec rms.

4nd April 2006

Radio census of ACS sources

 Radio flux within
 0.75arcsec of all z-band optical galaxies.

(Note excluding all bright radio sources (>20µJ) Median valu pixel)) implying

Median values are not statistically different from means implying that of the ~2700 galaxies brighter than Z=24mag, around 1400 will have radio flux densities of ~4µJy or greater (~8σ for a deep *e*-MERLIN/EVLA image)

4nd April 2006

Radio source sizes: very weak (sub-20uJy) radio sources

Average radio source sizes in each magnitude bin can be derived from flux densities found in annuli over radii of 0.25-2 arcsec

NAM 2006 – Next Generation Radio Instruments

Radio source sizes: very weak (sub-20uJy) radio sources

4nd April 2006

Radio source sizes: very weak (sub-20uJy) radio sources

Average source sizes range from r~0.75arcsec (21.25^{mag} [~12µJy]) to r~0.6 arcsec (23.25^{mag} [~6µJy]) -ideally suited to *e*-MERLIN

Radio Instruments

Average images of starbursts in the HDF-N

Radio flux density contained within an annulus of radius 0.75 arcseconds centred on the position of each of **13000 catalogued** galaxies in the region of overlap between the ACS and MERLIN/VLA image binned by Zband magnitude. **Control sample** incorporates a random 7 arcsecond offset.

Average images of starbursts in the HDF-N

0

0

٥

-1.0

-1.5

(a)
 (b)
 (c)
 (c)

4nd April 2006

Only ~1000 of the 13000 galaxies have published spectroscopic redshifts available (Keck)

> NAM 2006 – Next Generation Radio Instruments

Measured redshifts binned by magnitude. With average redshifts and radio flux densities in each magnitude bin (down to 24th magnitude) we may now derive luminosities

4nd April 2006

The radio properties of the galaxies with measured redshifts appear to mirror those of the full sample

NAM 2006 – Next Generation Radio Instruments

e-MERLIN should image >1000 starburst systems to ~4µJy with perhaps 150-200 at high redshift in a single field. Many thousands of systems with radio flux densities <1µJy will be studied statistically

NAM 2006 – Next Generation Radio Instruments

- One of the deepest & longest MERLIN observations to date has revealled:
 - A plethora of radio sources with flux < few tens of µJy. The majority of which are starforming galaxies.
 - At 1.4GHz the deepest current MERLIN observations can statistically detect 1000s of optically faint sources.
 - MERLIN angular resolution is ideal. Resolving these sources to sizes $\sim 750 \rightarrow 600$ mas (mag 21 \rightarrow 23 mag).

What will *e*-MERLIN do?

- e-MERLIN at 1.4 GHz will be the instrument of choice to image in detail the regions of extended radio emission in these very weak starburst galaxies.
- e-MERLIN at 5 GHz will be the instrument of choice to detect any embedded radio-quiet AGN which may be present.
- e-MERLIN at 1.4GHz should image >1000 sources to ~4µJy with perhaps 150-200 at very high redshift (per pointing). Statistical studies on many thousands of sources <1µJy will investigate the population that SKA will image.

